Самый твердый камень на земле. Драгоценные камни. Изумруд и сапфир

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Твердость камней определяется твердость по Моосу на царапанье и твёрдость по Розивалю. В наше время определяют твердость камней по шкале Мооса только коллекционеры и любители. Раньше когда оптика ещё не была сильно развита методом определения твёрдости на царапанье определяли подлинность драгоценных камней. Сейчас научились искусственно выращивать камни и поэтому метод Мооса определяет не очень точно. Придумал этот способ определение твёрдости Венский минералог Фридрих Моос. У этого метода есть недостаток можно повредить камень но зато есть и плюсы он не требует наличия дорогого оборудования и наличия лаборатории.
Принцип этого метода заключается в определение сопротивления камня на царапанье его поверхности острым специальным предметом. Камни имеющие твердость по Моосу выше 7 являются твёрдыми камнями, а камни с твёрдостью ниже 7 подвержены стиранию обычной пылью так как пыль содержит мельчайшие зёрна кварца которые имеют твёрдость по Моосу 7. Поэтому камни имеющие твёрдость по Моосу ниже 7 быстро тускнеют, у них быстро стирается полировка и сильно царапаются при контакте с более твёрдыми предметами. Производить твёрдость на царапанье нужно только острым краем образца только по ровным и свежим поверхностям камня, а если определять на ребристых образований или на выветренных с поверхности штуфов то значения твёрдости на царапанье будут получаться заниженными. Некоторые камни на разных гранях и на разных плоскостях могут иметь разную твёрдость царапанья. Например такие отличия имеет алмаз и благодаря этому его можно шлифовать хотя твердость алмаза по шкале Мооса считается самой высокой.
Ниже приведена относительная шкала твердости камней по Моосо в которой показано как можно поцарапать камень и какую твёрдость шлифования по Розивалю имеет камень в зависимости от твёрдости царапанья по Моосу.

Шкала Мооса таблица простого определения твёрдости

Определив твёрдость царапанья камня затем можно по специально созданной таблице определить соответствие камня.
Относительная таблица Мооса.

Камень Твёрдость по Моосу Камень Твёрдость по Моосу Камень Твёрдость по Моосу
Алмаз 10 Смарагдит 6,5 Томсонит 5-5,5
Рубин 9 Везувиан 6,5 Титанит 5-5,5
Сапфир 9 Силлиманит 6-7,5 Чпатит 5
Александрит 8,5 Касситерит 6-7 Аугелит 5
Хризоберилл 8,5 Эпидот 6-7 Диоптаз 5
Цейлонит 8 Гидденит 6-7 Гемиморфш 5
Родицит 8 Кунцит 6-6,5 Смитсонит 5
Шпинель 8 Амазонит 6-6,5 Страз 5
Таафеит 8 Авантюриновый полевой шпат 6-6,5 Вардит 5
Топаз 8 Бенитоит 6-6,5 Кианит 4.5 и 7
ИАГ-гранат (гранатит) 8 Ортоклаз 6-6.5 Апофиллит 4,5-5
Аквамарин 7,5-8 Эканит 6-6,5 Шеелит 4,5-5
Берилл 7,5-8 Фабулит 6-6.5 Цинкит 4,5-5
Ганит 7,5-8 Лабрадор 6-6,5 Колеманит 4,5
Пейнит 7,5-8 Лунный камень 6-6,5 Варисцит 4,5
Фенакит 7,5-8 Нефрит 6-6,5 Пурпурит 4,5
Изумруд 7,5-8 Петалит 6-6,5 Баритокальци т 4
Альмандин 7,5-8 Пренит 6-6,5 Флюорит 4-4,5
Андалузит 7,5 Пирит 6-6,5 Магнезит 4
Эвклаз 7,5 Рутил 6-6,5 Родохрозит 4
Гамбергит 7,5 Амблигонит 6 Доломит 3,5-4,5
Уваровит 7,5 Битовнит 6 Сидерит 3,5-4
Кордиерит 7-7,5 Санидин 6 Арагонит 3,5-4,5
Данбурит 7-7,5 Тугтупит 6 Азурит 3,5-4
Гроссуляр 7-7,5 Гематит 5,5-6,5 Куприт 3,5-4
Пироп 7-7,5 Опал 5,5-6,5 Халькопирит 3,5-4
Спессартин 7-7,5 Родонит 5,5-6,5 Малахит 3,5-4
Ставролит 7-7,5 Тремолит 5,5-6,5 Сфалерит 3,5-4
Турмалин 7-7,5 Актинолит 5,5-6 Церуссит 3,5
Аметист 7 Анатаз 5,5-6 Говлит 3,5
Авантюрин 7 Бериллонит 5.5-6 Витерит 3,5
Горный хрусталь 7 Элеолит 5,5-6 Кораллы 3-4
Цитрин 7 Гаюин 5,5-6 Жемчуг 3-4
Дюмортьерит 7 Периклаз 5,5-6 Ангидрит 3-3,5
Дымчатый кварц (раухтопаз) 7 Псиломелан 5.5-6 Барит 3
Розовый кварц 7 Содалит 5,5-6 Кальцит 3
Тигровый глаз 7 Бразилианит 5,5 Курнаковит 3
Циркон 6,5-7,5 Хромит 5,5 Вульфенит 3
Агат 6,5-7 Энстатит 5.5 Гагат 2,5-4
Аксинит 6.5-7 Лейцит 5.5 Крокоит 2,5-3
Халцедон 6,5-7 Молдавит 5.5 Гарниерит 2,5-3,5
Хлоромеланит 6,5-7 Натролит 5,5 Гейлюссит 2,5
Хризопраз 6,5-7 Виллемит 5.5 Прустит 2,5
Демантоид 6,5-7 Скаполит 5-6,5 Серпентин 2,5
Окаменелое дерево 6.5-7 Канкринит 5-6 Хризоколла 2-2,5
Жадеит 6,5-7 Диопсид 5-6 Слоновая кость 2-4
Яшма 6-7 Г иперстен 5-6 Янтарь 2-3
Корнерупин 6,5-7 Ильменит 5-6 Морская пенка (сепиолит) 2-2,5
Перидот(хризолит) 6,5-7 Лазурит 5-6 Алебастр 2-2,5
Танзанит 6,5-7 Лазулит 5-6 Улексит 2
Г аллиант 6,5 Танталит 5-6 Вивианит 1,5-3
Перистерит 6,5 Бирюза 5-6 Стихтит 1,5-2,5
Соссюрит 6,5 Датолит 5-5.5 Сера 1,5-2
Сингалит 6,5 Обсидиан 5-5,5

В этой таблице каждый экземпляр в шкале Мооса имеет свою твёрдость.

Окружающий нас мир таит в себе еще множество загадок, но даже давно известные ученым явления и вещества не перестают удивлять и восторгать. Мы любуемся яркими красками, наслаждаемся вкусами и используем свойства всевозможных веществ, делающих нашу жизнь комфортнее, безопаснее и приятнее. В поисках самых надежных и крепких материалов человек совершил немало восторгающих открытий, и перед вами подборка как раз из 25 таких уникальных соединений!

25. Алмазы

Об этом точно знают если не все, то почти все. Алмазы – это не только одни из самых почитаемых драгоценных камней, но и один из самых твердых минералов на Земле. По шкале Мооса (шкала твёрдости, в которой оценка дается по реакции минерала на царапание) алмаз числится на 10 строчке. Всего в шкале 10 позиций, и 10-ая – последняя и самая твердая степень. Алмазы такие твердые, что поцарапать их можно разве что другими алмазами.

24. Ловчие сети паука вида Caerostris darwini


Фото: pixabay

В это сложно поверить, но сеть паука Caerostris darwini (или паук Дарвина) крепче стали и тверже кевлара. Эту паутину признали самым твердым биологическим материалом в мире, хотя сейчас у нее уже появился потенциальный конкурент, но данные еще не подтверждены. Паучье волокно проверили на такие характеристики, как разрушающая деформация, ударная вязкость, предел прочности и модуль Юнга (свойство материала сопротивляться растяжению, сжатию при упругой деформации), и по всем этим показателям паутина проявила себя удивительнейшим образом. Вдобавок ловчая сеть паука Дарвина невероятно легкая. Например, если волокном Caerostris darwini обернуть нашу планету, вес такой длинной нити составит всего 500 граммов. Таких длинных сетей не существует, но теоретические подсчеты просто поражают!

23. Аэрографит


Фото: BrokenSphere

Эта синтетическая пена – один из самых легких волокнистых материалов в мире, и она представляет собой сеть углеродных трубочек диаметром всего в несколько микронов. Аэрографит в 75 раз легче пенопласта, но при этом намного прочнее и пластичнее. Его можно сжать до размеров, в 30 раз меньших первоначального вида, без какого-либо вреда для его чрезвычайно эластичной структуры. Благодаря этому свойству аэрографитная пена может выдержать нагрузку, в 40 000 раз превышающую ее собственный вес.

22. Палладиевое металлическое стекло


Фото: pixabay

Команда ученых их Калифорнийского технического института и Лаборатории Беркли (California Institute of Technology, Berkeley Lab) разработала новый вид металлического стекла, совместивший в себе практически идеальную комбинацию прочности и пластичности. Причина уникальности нового материала кроется в том, что его химическая структура успешно скрадывает хрупкость существующих стеклообразных материалов и при этом сохраняет высокий порог выносливости, что в итоге значительно увеличивает усталостную прочность этой синтетической структуры.

21. Карбид вольфрама


Фото: pixabay

Карбид вольфрама – это невероятно твердый материал, обладающий высокой износостойкостью. В определенных условиях это соединение считается очень хрупким, но под большой нагрузкой оно показывает уникальные пластические свойства, проявляющиеся в виде полос скольжения. Благодаря всем этим качествам карбид вольфрама используется в изготовлении бронебойных наконечников и различного оборудования, включая всевозможные резцы, абразивные диски, свёрла, фрезы, долота для бурения и другие режущие инструменты.

20. Карбид кремния


Фото: Tiia Monto

Карбид кремния – один из основных материалов, используемых для производства боевых танков. Это соединение известно своей низкой стоимостью, выдающейся тугоплавкостью и высокой твердостью, и поэтому оно часто используется в изготовлении оборудования или снаряжения, которое должно отражать пули, разрезать или шлифовать другие прочные материалы. Из карбида кремния получаются отличные абразивы, полупроводники и даже вставки в ювелирные украшения, имитирующие алмазы.

19. Кубический нитрид бора


Фото: wikimedia commons

Кубический нитрид бора – это сверхтвердый материал, по своей твердости схожий с алмазом, но обладающий и рядом отличительных преимуществ – высокой температурной устойчивости и химической стойкости. Кубический нитрид бора не растворяется в железе и никеле даже под воздействием высоких температур, в то время как алмаз в таких же условиях вступает в химические реакции достаточно быстро. На деле это выгодно для его использования в промышленных шлифовальных инструментах.

18. Сверхвысокомолекулярный полиэтилен высокой плотности (СВМПЭ), марка волокон «Дайнима» (Dyneema)


Фото: Justsail

Полиэтилен с высоким модулем упругости обладает чрезвычайно высокой износостойкостью, низким коэффициентом трения и высокой вязкостью разрушения (низкотемпературная надёжность). Сегодня его считают самым прочным волокнистым веществом в мире. Самое удивительное в этом полиэтилене то, что он легче воды и одновременно может останавливать пули! Тросы и канаты из волокон Дайнима не тонут в воде, не нуждаются в смазке и не меняют свои свойства при намокании, что очень актуально для судостроения.

17. Титановые сплавы


Фото: Alchemist-hp (pse-mendelejew.de)

Титановые сплавы невероятно пластичные и демонстрируют удивительную прочность во время растяжения. Вдобавок они обладают высокой жаропрочностью и коррозионной стойкостью, что делает их крайне полезными в таких областях, как авиастроение, ракетостроение, судостроение, химическое, пищевое и транспортное машиностроение.

16. Сплав Liquidmetal


Фото: pixabay

Разработанный в 2003 году в Калифорнийском техническом институте (California Institute of Technology), этот материал славится своей силой и прочностью. Название соединения ассоциируется с чем-то хрупким и жидким, но при комнатной температуре оно на самом деле необычайно твердое, износостойкое, не боится коррозии и при нагревании трансформируется, как термопласты. Основными сферами применения пока что являются изготовление часов, клюшек для гольфа и покрытий для мобильных телефонов (Vertu, iPhone).

15. Наноцеллюлоза


Фото: pixabay

Наноцеллюлозу выделяют из древесного волокна, и она представляет собой новый вид деревянного материала, который прочнее даже стали! Вдобавок наноцеллюлоза еще и дешевле. Инновация имеет большой потенциал и в будущем может составить серьезную конкуренцию стеклу и углеволокну. Разработчики считают, что этот материал вскоре будет пользоваться большим спросом в производстве армейской брони, супергибких экранов, фильтров, гибких батареек, абсорбирующих аэрогелей и биотоплива.

14. Зубы улиток вида «морское блюдечко»


Фото: pixabay

Ранее мы уже рассказали вам о ловчей сети паука Дарвина, которую некогда признали самым прочным биологическим материалом на планете. Однако недавнее исследование показало, что именно морского блюдечка – наиболее прочная из известных науке биологических субстанций. Да-да, эти зубки прочнее паутины Caerostris darwini. И это неудивительно, ведь крошечные морские создания питаются водорослями, растущими на поверхности суровых скал, и чтобы отделить пищу от горной породы, этим зверькам приходится потрудиться. Ученые полагают, что в будущем мы сможем использовать пример волокнистой структуры зубов морских блюдечек в машиностроительной промышленности и начнем строить автомобили, лодки и даже воздушные суда повышенной прочности, вдохновившись примером простых улиток.

13. Мартенситно-стареющая сталь


Фото: pixabay

Мартенситно-стареющая сталь – это высокопрочный и высоколегированный сплав, обладающий превосходной пластичностью и вязкостью. Материал широко распространен в ракетостроении и используется для изготовления всевозможных инструментов.

12. Осмий


Фото: Periodictableru / www.periodictable.ru

Осмий – невероятно плотный элемент, и благодаря своей твердости и высокой температуре плавления он с трудом поддается механической обработке. Именно поэтому осмий используют там, где долговечность и прочность ценятся больше всего. Сплавы с осмием встречаются в электрических контактах, ракетостроении, военных снарядах, хирургических имплантатах и применяются еще во многих других областях.

11. Кевлар


Фото: wikimedia commons

Кевлар – это высокопрочное волокно, которое можно встретить в автомобильных шинах, тормозных колодках, кабелях, протезно-ортопедических изделиях, бронежилетах, тканях защитной одежды, судостроении и в деталях беспилотных летательных аппаратов. Материал стал практически синонимом прочности и представляет собой вид пластика с невероятно высокой прочностью и эластичностью. Предел прочности кевлара в 8 раз выше, чем у стального провода, а плавиться он начинает при температуре в 450℃.

10. Сверхвысокомолекулярный полиэтилен высокой плотности, марка волокон «Спектра» (Spectra)


Фото: Tomas Castelazo, www.tomascastelazo.com / Wikimedia Commons

СВМПЭ – это по сути очень прочный пластик. Спектра, марка СВМПЭ, – это в свою очередь легкое волокно высочайшей износостойкости, в 10 раз превосходящее по этому показателю сталь. Как и кевлар, спектра используется в изготовлении бронежилетов и защитных шлемов. Наряду с СВМПЭ марки дайнимо спектра популярна в судостроении и транспортной промышленности.

9. Графен


Фото: pixabay

Графен – это аллотропная модификация углерода, и его кристаллическая решетка толщиной всего в один атом настолько прочная, что она в 200 раз тверже стали. Графен с виду похож на пищевую пленку, но порвать его – практически непосильная задача. Чтобы пробить графеновый лист насквозь, вам придется воткнуть в него карандаш, на котором должен будет балансировать груз весом с целый школьный автобус. Удачи!

8. Бумага из углеродных нанотрубок


Фото: pixabay

Благодаря нанотехнологиям ученым удалось сделать бумагу, которая в 50 тысяч раз тоньше человеческого волоса. Листы из углеродных нанотрубок в 10 раз легче стали, но удивительнее всего то, что по прочности они превосходят в целых 500 раз! Макроскопические пластины из нанотрубок наиболее перспективны для изготовления электродов суперконденсаторов.

7. Металлическая микрорешетка


Фото: pixabay

Перед вами самый легкий в мире металл! Металлическая микрорешетка – это синтетический пористый материал, который в 100 раз легче пенопласта. Но пусть его внешний вид не вводит вас в заблуждение, ведь эти микрорешетки заодно и невероятно прочные, благодаря чему они обладают большим потенциалом для использования во всевозможных инженерных областях. Из них можно изготавливать превосходные амортизаторы и тепловые изоляторы, а удивительная способность этого металла сжиматься и возвращаться в своё первоначальное состояние позволяет использовать его для накопления энергии. Металлические микрорешетки также активно применяются в производстве различных деталей для летательных аппаратов американской компании Boeing.

6. Углеродные нанотрубки


Фото: User Mstroeck / en.wikipedia

Выше мы уже рассказывали про сверхпрочные макроскопические пластины из углеродных нанотрубок. Но что же это за материал такой? По сути это свернутые в трубку графеновые плоскости (9-ый пункт). В результате получается невероятно легкий, упругий и прочный материал широкого спектра применения.

5. Аэрографен


Фото: wikimedia commons

Известный также как графеновый аэрогель, этот материал чрезвычайно легкий и прочный одновременно. В новом виде геля жидкая фаза полностью заменена на газообразную, и он отличается сенсационной твердостью, жаропрочностью, низкой плотностью и низкой теплопроводностью. Невероятно, но графеновый аэрогель в 7 раз легче воздуха! Уникальное соединение способно восстанавливать свою изначальную форму даже после 90% сжатия и может впитывать такое количество масла, которое в 900 раз превышает вес используемого для абсорбции аэрографена. Возможно, в будущем этот класс материалов поможет в борьбе с такими экологическими катастрофами, как разливы нефти.

4. Материал без названия, разработка Массачусетского технологического института (MIT)


Фото: pixabay

Пока вы читаете эти строки, команда ученых из MIT работает над усовершенствованием свойств графена. Исследователи заявили, что им уже удалось преобразовать двумерную структуру этого материала в трехмерную. Новая графеновая субстанция еще не получила своего названия, но уже известно, что ее плотность в 20 раз меньше, чем у стали, а ее прочность в 10 раз выше аналогичной характеристики стали.

3. Карбин


Фото: Smokefoot

Хоть это и всего лишь линейные цепочки атомов углерода, карбин обладает в 2 раза более высоким пределом прочности, чем графен, и он в 3 раза жестче алмаза!

2. Нитрид бора вюрцитной модификации


Фото: pixabay

Это недавно открытое природное вещество формируется во время вулканических извержений, и оно на 18% тверже алмазов. Впрочем, алмазы оно превосходит еще по целому ряду других параметров. Вюрцитный нитрид бора – одна из всего 2 натуральных субстанций, обнаруженных на Земле, которая тверже алмаза. Проблема в том, что таких нитридов в природе очень мало, и поэтому их непросто изучать или применять на практике.

1. Лонсдейлит


Фото: pixabay

Известный также как алмаз гексагональный, лонсдейлит состоит из атомов углерода, но в случае данной модификации атомы располагаются несколько иначе. Как и вюрцитный нитрид бора, лонсдейлит – превосходящая по твердости алмаз природная субстанция. Причем этот удивительный минерал тверже алмаза на целых 58%! Подобно нитриду бора вюрцитной модификации, это соединение встречается крайне редко. Иногда лонсдейлит образуется во время столкновения с Землей метеоритов, в состав которых входит графит.

Каждый из вас знает, что эталоном твердости на сегодня так и остается алмаз. При определении механической твердости существующих на земле материалов твердость алмаза берется как эталон: при измерениях методом Мооса – в виде поверхностного образца, методами Виккерса или Роквелла – в качестве индентора (как более твердое тело при исследовании тела с меньшей твердостью). На сегодняшний день можно отметить несколько материалов, твердость которых приближается к характеристикам алмаза.

Сравниваются в данном случае оригинальные материалы, исходя из их микротвердости по методу Виккерса, когда материал считается сверхтвердым при показателях в более 40 ГПа. Твердость материалов может изменяться, в зависимости от характеристик синтеза образца или направления приложенной к нему нагрузки.

Колебания показателей твердости от 70 до 150 ГПа – общеустановленное понятие для твердых материалов, хотя эталонной величиной принято считать 115 ГПа. Давайте рассмотрим 10 самых твердых материалов, кроме алмаза, которые существуют в природе.

10. Субоксид бора (B 6 O) - твердость до 45 ГПа

Субоксид бора обладает способностями создавать зерна, имеющие форму икосаэдров. Образованные зерна при этом не являются обособленными кристаллами или разновидностями квазикристаллов, представляя собой своеобразные кристаллы-двойники, состоящие из двух десятков спаренных кристаллов-тетраэдров.

10. Диборид рения (ReB 2) - твердость 48 ГПа

Многие исследователи ставят под сомнение вопрос, может ли этот материал причисляться к материалам сверхтвердого типа. Это вызвано весьма необычными механическими свойствами соединения.

Послойное чередование разных атомов делает этот материал анизотропным. Поэтому измерение показателей твердости получаются разными при наличии разнотипных кристаллографических плоскостей. Таким образом, испытаниями диборида рения при малых нагрузках обеспечивается твердость в 48 ГПа, а при увеличении нагрузки твердость становится намного меньше и составляет приблизительно 22 ГПа.

8. Борид магния-алюминия (AlMgB 14) - твердость до 51 ГПа

Состав представляет собой смесь алюминия, магния, бора с невысокими показателями трения скольжения, а также высокой твердостью. Эти качества могли бы стать находкой для производства современных машин и механизмов, работающих без смазки. Но использование материала в такой вариации пока что считается непомерно дорогим.

AlMgB14 - специальные тоненькие пленки, создающиеся при помощи лазерного напыления импульсного типа, имеют способность обладать микротвердостью до 51 ГПа.

7. Бор-углерод-кремний - твердость до 70 ГПа

Основа такого соединения обеспечивает сплаву качества, подразумевающие оптимальную устойчивость к химическим воздействиям негативного типа и высокой температуре. Такой материал обеспечивается микротвердостью до 70 ГПа.

6. Карбид бора B 4 C (B 12 C 3) - твердость до 72 ГПа

Еще один материал – карбид бора. Вещество достаточно активно стало использоваться в разных сферах промышленности практически сразу же после его изобретения в 18 веке.

Микротвердость материала достигает 49 ГПа, но доказано, что и этот показатель можно увеличить посредством добавления ионов аргона в строение кристаллической решетки – до 72 ГПа.

5. Нитрид углерода-бора - твердость до 76 ГПа

Исследователи и ученые со всего мира давно пытаются синтезировать многосложные сверхтвердые материалы, в чем уже были достигнуты ощутимые результаты. Компонентами соединения являются атомы бора, углерода и азота – близкие по размерам. Качественная твердость материала доходит до 76 ГПа.

4. Наноструктурированный кубонит - твердость до 108 ГПа

Материал еще называется кингсонгитом, боразоном или эльбором, а также обладает уникальными качествами, успешно используемыми в современной промышленности. При показателях твердости кубонита в 80-90 ГПа, близких к алмазному эталону, сила закона Холла-Петча способна обусловить их значительный рост.

Это означает, что при уменьшении размеров кристаллических зерен увеличивается твердость материала – существуют определенные возможности увеличения до 108 ГПа.

3. Вюртцитный нитрид бора - твердость до 114 ГПа

Вюрцитная кристаллическая структура обеспечивает высокие показатели твердости данному материалу. При локальных структурных модификациях, во время приложения нагрузки конкретного типа, связи между атомами в решетке вещества перераспределяются. В этот момент качественная твердость материала становится больше на 78 %.

Лонсдейлит является аллотропной модификацией углерода и отличается явной схожестью с алмазом. Обнаружен твердый природный материал был в метеоритном кратере, образовавшись из графита – одного из компонентов метеорита, однако рекордной степенью прочности он не обладал.

Учеными было доказано еще в 2009 году, что отсутствие примесей способно обеспечить твердость, превышающую твердость алмаза. Высокие показатели твердости способны обеспечиваться в этом случае, как и в случае с вюртцитным нитридом бора.

Полимеризованный фуллерит считается в наше время самым твердым материалом, известным науке. Это структурированный молекулярный кристалл, узлы которого состоят из целых молекул, а не из отдельных атомов.

Твердость фуллерита составляет до 310 ГПа, и он способен поцарапать алмазную поверхность, как обычный пластик. Как видите, алмаз это больше не самый твёрдый природный материал в мире, науке доступны более твердые соединения.

Пока это самые твердые материалы на Земле, известные науке. Вполне возможно, в скором времени нас ждут новые открытия и прорыв в области химии/физики, что позволит добиться более высокой твердости.

самый твердый камень

Альтернативные описания

Драгоценный камень, минерал кристаллического строения, блеском и твердостью превосходящий все другие минералы

Прозрачный кристалл такого минерала, ограненный и отшлифованный особым образом

Что-либо чрезвычайно ценное, незаурядное, исключительное (переносное значение)

Драгоценный камень, уважаемый стеклорезами

Инструмент для резки стекла

Камень чистой воды

Кинотеатр в Москве, ул. Шаболовка

Клипер, на котором три года плавал композитор Н. А. Римский-Корсаков

Король среди драгоценных камней

Минерал, добываемый в Якутии

Музыкальный хит Алисы Мон

Подобно льву среди зверей, он царствует среди камней

Прозрачный драгоценный камень, блеском и твердостью превосходящий все другие минералы

Самый твердый минерал в природе

Стихотворение А. Фета

Химическое вещество, естественный абразивный материал

. «Куллинан»

Прекрасный вариант графита

. «... и в грязи видать» (поговорка)

Российская космическая станция

Фильм Эдварда Цвика «Кровавый...»

Неотесанный бриллиант

Что добывает компания «Де Бирс»?

В Древнем Риме рабу, сумевшему расколоть этот камень, обещали свободу

Переведите на арабский язык слово «твердейший»

В шкале Мооса на первом месте находится тальк, на третьем - кальцит, на седьмом - кварц, а что в этой шкале находится на десятом месте?

Название этого минерала происходит от греческого слова «adamas» - «несокрушимый»

Какой камень можно найти в кимберлитовой трубке?

Углерод в ранге драгоценности

Царь камней

Самый твердый минерал

Камень, символ апреля

Твердый и прекрасный вариант графита

Драгоценный углерод

Камень для точного глаза

Суть «Орлова»

Минерал, драгоценный камень первого класса

Марка российского телевизора

Сорт пшеницы

Абразивный материал, самый твердый минерал

Московский кинотеатр

Точный глаз

. «шах», «Орлов»

Бриллиант без огранки

Тверже него нет ничего

Прочный стеклорез

. «шах» и «Орлов»

Царь среди камней

Бриллиант

Король драгоценных камней

Сырец бриллианта

. «пепел и...» Анджея Вайды

Будущий бриллиант

. «звезда Сьерра-Леоне»

Благородный родич графита

Драгоценная деталь стеклореза

Углерод-аристократ

Камень «Орлов»

. «твердолобый» минерал

Король среди самоцветов

Камень, помогающий при тяжелых родах

Исходник для бриллианта

Драгоценное сравнение для точного глаза

Король среди минералов

Бриллиант до огранки

Король самоцветов

Самый твердый из минералов

Бриллиант для стеклореза

Драгоценность в стеклорезе

Бриллиант в начале карьеры

Чистый углерод

Богатый родственник графита

Драгоценный минерал

Камень в стеклорезе

Стеклорезный камень

. «орлов» среди камней

Драгоценность для резки стекла

Какой драгоценный камень может погубить только высокая температура?

Очень твердый камень

Самая твердая драгоценность

Драгоценный камень

Камень, режущий стекло

. «фондовый» минерал

Заготовка для бриллианта

Верный глаз

Прочный камень

Адамант

Самый твердый минерал

Минерал, одна из кристаллических полиморфных модификаций углерода

Драгоценный камень

Прозрачный драгоценный камень, минерал (символ невинности, твёрдости и храбрости)

Инструмент для резки стекла в виде острого куска этого камня, вделанного в р укоятку

Тип минерала, относящийся к самородным элементам

. "... и в грязи видать" (поговорка)

. "Орлов" среди камней

. "Твердолобый" минерал

. "Фондовый" минерал

. "пепел и..." Анджея Вайды

. "шах", "Орлов"

. "Звезда Сьерра-Леоне"

. "Куллинан"

. "Шах" и "Орлов"

В шкале Мооса на первом месте находится тальк, на третьем - кальцит, на седьмом - кварц, а что в этой шкале находится на десятом месте

Драгоценный камень для родившихся под знаком овна

Ж. первый по блеску, твердости и ценности из дорогих (честных) камней; адамант, бриллиант. Алмаз, чистый углерод в гранках (кристаллах), сгорает без остатка, образуя угольную кислоту. Алмаз название общее: бриллиант, более ценный по величине и полной грани, осаживается сквозниною, без подложки; алмаз, неполной грани, плоский, бывает в глухой (с исподу) оправе; розетка, искра, самый мелкий алмаз. Алмаз стекольщичий, неграненый, сырой, в оправе на ребро, на природную грань. Это алмазец порядочный; это алмазик годный; это алмазишка дрянной; а вот алмазище царский. Алмаз стекольщика белит, негоден, не режет, а только скребет, царапает. Свой глаз алмаз, свой призор. Алмаз алмазом режется, вор вором губится, в сыщики берут такого же вора. Тверд (верен, дорог), как алмаз. Алмаз ангельская слеза, поверье. Алмазный перстень, с алмазами; алмазный прииск, алмазный блеск. Алмазистый, алмазовидный, подобный ему, сходный с ним. Алмазник м. торгующий честными каменьями. Алмазчик м. бриллиантщик, ювелир, кто гранит алмазы или оправляет дорогие каменья

Какой драгоценный камень может погубить только высокая температура

Какой камень можно найти в кимберлитовой трубке

Камень "Орлов"

Минерал - эталон точного глаза

Название этого минерала происходит от греческого слова "adamas" - "несокрушимый"

Очень крепкий камень

Переведите на арабский язык слово "твердейший"

Сверхпрочный камень

Суть "Орлова"

Фильм Эдварда Цвика "Кровавый..."

Что добывает компания "Де Бирс"

Драгоценный камень некоторое время назад потерял свой титул самого твёрдого материала в мире, уступив искусственным наноматериалам немного большей твёрдости. Сегодня редкое натуральное вещество, по всей видимости, оставит всех прочих позади - оно на 58% твёрже алмаза.

Зиченг Пэн (Zicheng Pan) из Шанхайского университета Цзяо Тун совместно с коллегами смоделировал, как атомы в двух субстанциях предположительно имеющих свойства очень твёрдых материалов будут реагировать на воздействие специального датчика.

Экстремальные условия

Первый - вюрцит бор нитрид имеет сходную с алмазом структуру, но состоит из других атомов.

Второй - минерал лонсдейлит, или гексагональный алмаз, состоит из атомов углерода, таких как алмаз, но они организованы по-другому.
Моделирование показало, что вюрцит бор нитрид способен выдержать на 18% больше воздействия, чем алмаз, а лонсдейлит - на 58% больше. Если результаты подтвердятся в рамках физических экспериментов, оба материала окажутся намного твёрже любого известного вещества.

Но произвести такие испытания будет не просто, т.к. оба материала не часто встречаются в природе.

Редкое вещество лонсдейлит формируется, когда метеориты, содержащие графит падают на Землю, а вюрцит бор нитрид формируется в процессе вулканических извержений при высоких температурах и давлении.

Гибкость

При успешных результатах вюрцит бор нитрид может стать наиболее применимым из двух, благодаря тому, что он устойчивый к кислороду при более высоких температурах, чем алмаз. Это делает его идеальным для применения на концах режущих и сверлильных инструментов, работающих при очень высоких температурах, или в качестве коррозиеустойчивых плёнок - на поверхности космических кораблей, например.

Парадоксально, своей твёрдостью вюрцит бор нитрид обязан гибкости связей между атомами, которые его образуют. Когда материал подвергается воздействию, некоторые связи меняют направление почти на 90º, чтобы ослабить напряжение. После того, как алмаз и вюрцит бор нитрид были подвергнуты одному и тому же процессу, что-то в структуре вюрцит бор нитрида сделало его почти на 80% твёрже, утверждает соавтор исследования Чанфенг Чен (Changfeng Chen) из университета Невады в Лас-Вегасе.

Учёные подчёркивают, для того, чтобы доказать теорию, необходимы монокристаллы каждого из материалов. На данный момент не существует способов изолировать или вырастить такие кристаллы.

На сегодняшний день не существует единой классификации полудрагоценных камней , есть лишь условное деление. Узнать все о камнях, их свойства описания можно на сайте http://www.catalogmineralov.ru/cont/poludragocennye_kamni.htm. Решая сделать подарок с полудрагоценным камнем близкому человеку, для начала ознакомьтесь с этим камнем.

Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Подать заявление в пенсионный фонд после решения суда Подать заявление в пенсионный фонд после решения суда Лучший рейтинг колясок для новорожденных Лучший рейтинг колясок для новорожденных Детские развивающие коврики своими руками Материалы для изготовления Детские развивающие коврики своими руками Материалы для изготовления