Использование энергии молний. Грозовая энергетика как перспективный источник энергии. место. Ветряные электростанции

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Каждый, кто когда-нибудь читал про огромные значения напряжений и токов в канале линейной молнии, задумывался: а нельзя ли как-то эти молнии ловить и переправлять в энергетические сети? Дабы питать холодильники, лампочки, тостеры и прочие стиральные машины. Разговоры о таких станциях ведутся уже много лет, но не исключено, что в следующем году мы наконец увидим действующий образец «сборщика молний».

Покопавшись в фантастической литературе, наверняка можно наткнуться на что-то подобное. Да и разных патентных заявок на эту тему, полагаем, сделано немало. Только вот реального воплощения всё не видать.

Проблем тут масса. Молнии, увы, слишком ненадёжный поставщик электричества. Предугадать заранее, где случится гроза, едва ли возможно. А ждать её на одном месте - долго. Кроме того, молния - это напряжения порядка сотен миллионов вольт и пиковый ток до 200 килоампер (в некоторых измеренных молниях; обычно - 5-20 килоампер).

Чтобы «питаться» молниями, их энергию явно нужно где-то накапливать за те тысячные доли секунды, что длится главная фаза разряда (удар молнии, кажущийся мгновенным, на самом деле состоит из нескольких фаз), а потом медленно отдавать в сеть, попутно преобразуя в стандартные 220 вольт и 50 или 60 герц переменного тока.

Заметим, что во время разряда молнии происходит довольно сложный процесс. Сначала из облака к земле (внутриоблачные молнии мы не рассматриваем) устремляется разряд-лидер, сформированный электронными лавинами, которые сливаются в разряды, называемые также стримерами. Лидер создаёт горячий ионизированный канал, по которому в противоположном направлении пробегает главный разряд молнии, вырванный с поверхности Земли сильным электрическим полем.

А ведь ещё надо добавить, что и те молнии, которые пробегают между облаками и землёй, делятся на два «зеркальных» типа: одни вызываются отрицательными разрядами, накапливающимися в нижней части грозового облака, а другие - положительными, которые собираются в его верхней части. Правда, второй тип встречается от 4 (в средних широтах) до 17 (в тропиках) раз реже, чем разряды первого типа (отрицательные молнии). Но и эту разницу всё равно нужно учитывать при проектировании сборщиков небесного электричества.

К сожалению, сторонники молниевых ферм забывают упомянуть, что сотни стальных вышек, которые, возможно, потребуются для эффективного сбора значительной доли молний, ударяющих во время грозы на приличной территории, эту самую территорию никак не украсят (на снимке - просто какие-то стальные мачты, фото Arek Daniel).

Как видим, проблем немало. А стоит ли тогда вообще связываться с молниями? Если поставить такую станцию в местности, где молнии бьют намного чаще обычного, толк, наверное, будет. По некоторым данным , при одном сильном грозовом шторме, когда молнии бьют непрерывно друг за другом, может выделиться такое количество энергии, что хватит на обеспечение электричеством всех США в течение 20 минут.

Конечно, какую бы станцию по ловле молний мы ни придумали, её КПД при преобразовании тока будет далеко не 100%, да и поймать, видимо, удастся отнюдь не все молнии, ударившие в окрестностях молниевой фермы.

Но всё равно, если бы грозы над станцией случались хотя бы раз в неделю... Стоп, так ведь в любой момент времени на нашей планете бушует 2 тысячи гроз! Заманчиво?

Да. Только распределяются эти грозы по столь большой площади, что перспективы поимки молнии «за хвост» сразу становятся туманными.

С другой стороны, грозы случаются на Земле очень неравномерно. К примеру, американские новаторы, задумывающиеся над сбором молний, давно посматривают в сторону Флориды: там есть район, славящийся как место, прямо-таки облюбованное небесными стрелами.

Ещё больше повезло Африке. Буквально на днях специалисты, работающие с американским спутником «Миссия измерения тропических штормов» (Tropical Rainfall Measuring Mission - TRMM), опубликовали отчёт об одном из свежих достижений этого спутника.

Проведя многолетние наблюдения, TRMM (руками специалистов, конечно) «составил» мировую карту частоты молний, окрасив ту или иную часть Земли в соответствии с числом ослепительных разрядов, возникающих над каждым квадратным километром данной местности за год.

Как видно из рисунка, в центральной части африканского континента есть немаленькая зона, где на квадратный километр приходится более 70 молний в год!


Частота молний в мире. Шкала справа проградуирована в штуках на квадратный километр в год, усреднённых по 11 годам наблюдения со спутника TRMM (иллюстрация NASA/MSFC).

Правда, разглядывая эту карту, нужно учесть, что в тропиках и ближе к экватору большая доля всех случающихся молний возникает между облаками или разными частями одного облака, а вот в средних широтах, напротив, значительную долю общего числа грозовых молний составляют «приземлённые» разряды. Выходит, и для России не всё потеряно, да и Центральная Африка (за счёт немалого общего числа молний) может рассчитывать на успех в сборе столь экзотического урожая.

Но пока с такими проектами выступают всё больше изобретатели из США.

К примеру, американская компания Alternative Energy Holdings , делясь планами своего развития, сообщает , что собирается осчастливить мир экологически чистой электростанцией, вырабатывающей ток по смешной цене $0,005 за киловатт-час.

Как именно в компании намерены собирать энергию разрядов - не указывается. Можно только предположить, что речь идёт о молниеотводах, снабжённых гигантскими наборами суперконденсаторов и преобразователей напряжения.

Кстати, в разное время разные изобретатели предлагали самые необычные накопители - от подземных резервуаров с металлом, который плавился бы от молний, попадающих в молниеотвод, и нагревал бы воду, чей пар вращал бы турбину, до электролизёров, разлагающих разрядами молний воду на кислород и водород. Но мы полагаем, что хоть какой-то возможный успех связан с более простыми системами.

Впрочем, посмотрим. Alternative Energy Holdings, что приятно, не ограничивается общими рассуждениями о светлом (далёком) будущем молниевой энергетики, а заявляет, что построит первый рабочий прототип такой станции, способной накапливать энергию грозовых разрядов, уже в 2007 году.

Компания намерена испытать свою установку в течение грозового сезона (то бишь лета) будущего года, в одном из мест, где молнии гуляют чаще обычного. При этом разработчики накопителя оптимистично считают, что электростанция «на молниях» окупится за 4-7 лет.

25.04.2018

Это направление пока еще можно назвать теоретическим. Его суть состоит в том, чтобы улавливать энергию молний с последующим перенаправлением ее в электросети. Такой источник энергии является возобновляемым, специалисты относят его к альтернативным, иначе говоря, экологически безопасным.

Как мы помним из школьного курса, образование молний представляет собой довольно сложный процесс. Из наэлектризованных облаков по направлению к земле устремляется главный разряд, сформированный электронными лавинами, объединенными в стримеры (разряды). За этим разрядом-лидером образуется горячий ионизированный канал. В свою очередь, по этому каналу в направлении от Земли движется главный разряд молнии, который вырывается с поверхности под действием мощного электрического поля. Процесс протекает молниеносно, повторяясь по несколько раз за долю секунды. Главная задача – уловить этот разряд и направить его в электросеть.

О преимуществах

Небесным электричеством люди заинтересовались очень давно. Стоит вспомнить Бенджамина Франклина, который в своих опытах запускал во время грозы воздушных змеев и в результате понял, что они собирают электрические заряды.

Если говорить об энергии молний, то в одном разряде собрано пять миллиардов джоулей чистейшей энергии, эквивалентной 145 литрам бензина. Ученые рассчитали, что один разряд молнии может обеспечить энергией население Соединенных Штатов на 20 минут. А если учесть, что каждый год по всей Земле ударяет полтора миллиарда разрядов (от 40 до 50 разрядов за секунду), то перспективы открываются поистине потрясающие.

Об экспериментах

Представители компании Alternative Energy Holdings в 2006 году сделали заявление, что ими успешно создан прототип конструкции, при помощи которой можно наглядно показать, как происходит захват молнии и ее преобразование в энергию для бытовых нужд. Как сказали в Alternative Energy Holdings, действующий промышленный аналог способен окупить себя за 4-7 лет, если розничная стоимость энергии будет составлять 0,005 $ за киловатт/час. Но проведенная серия опытов, видимо, не продемонстрировала впечатляющих результатов, и руководители проекта закрыли его. После чего энергия молний и энергия атомной бомбы были поставлены в один ряд (по словам Мартина А. Умани).

Через несколько лет (в 2013 году) сотрудники саунгемптонского университета смоделировали в лаборатории искусственный заряд, совпадающий с параметрами естественных молний. Используя сравнительно простое оборудование, ученые сумели уловить заряд и с его помощью целиком зарядить аккумулятор смартфона за считанные минуты.

О перспективах

Фермы по «отлову» молний пока еще просто мечта. На них можно было бы бесконечно получать дешевую энергию, не нанося вреда экологии. Главная проблема, препятствующая развитию этого направления, заключается в невозможности предсказания места и времени очередной грозы. То есть даже в местах с установленным максимальным числом ударов молний необходимо монтировать большое количество «ловушек».

Есть еще другие проблемы, которые заключаются в следующем:

  • молнии представляют собой кратковременные энергетические всплески длительностью в доли секунды, которые необходимо осваивать очень быстро. Решить эту задачу можно при наличии мощных конденсаторов. Однако такие устройства еще не созданы, а если и будут разработаны в будущем, то окажутся очень дорогими. Не исключено применение и различных колебательных систем с наличием контуров 2 и 3 рода, которые позволяют проводить согласование нагрузки с внутренним сопротивлением генераторов;
  • молнии могут образовываться из энергии, скопившейся в верхней и нижней частях облаков. В первом случае они будут положительными, во втором – отрицательными. Это тоже необходимо учитывать, оборудуя молниевую ферму. Кроме того, для «ловли» заряда со знаком плюс потребуется дополнительная энергия, наглядным доказательством чего служит люстра Чижевского;
  • по своей мощности заряды тоже сильно различаются. У большинства молний данный параметр составляет от 5 до 20 кА, однако у некоторых всполохов может достигать 200 кА. Для бытового использования каждый из разрядов необходимо стандартизировть (50-60 Гц, 220 В);
  • заряженные ионы в кубометре атмосферы имеют низкую плотность, а сопротивление воздуха, наоборот, высокое. Это говорит о том, что для улавливания молний необходимы ионизированные электроды, приподнятые над землей на максимальную величину, однако и они улавливают энергию лишь в виде микротоков. Но если электрод будет расположен слишком высоко (т.е. близко к облакам), то возможно самопроизвольное образование молнии, проще говоря, возникнет мощный и кратковременный всплеск напряжения, создающий риск поломки оборудования.

И все же такие проблемы не останавливают людей, мечтающих создать молниевые фермы. Ведь мечта об укрощении природы и получении доступа к возобновляемым энергетическим ресурсам существует сотни лет и становится все более реальной.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Размещено на http://www.allbest.ru

Альтернативные источники энергии. Грозовая электростанция

ВВЕДЕНИЕ

1.2 Проблемы развития энергетики

2.1 РАЗВИТИЕ АЛЬТЕРНАТИВНЫХ ИСТОЧНИКОВ ЭНЕРГИИ

3. ЭЛЕКТРОСТАНЦИЯ НА МОЛНИИ

3.1 Грозовая электростанция

ВВЕДЕНИЕ

Многолетние исследования показали - запасы многих видов органических источников энергии не бесконечны. Они истощаются с каждым годом в больших количествах в соответствии с их потреблением. Эти выводы привели к появлению множества вопросов в поиске новых источников энергии. Тем временем все источники энергии разделились на две основные категории. Все запасы существующего топлива для выработки энергии разделились на два основных типа:

Возобновляемые;

Не возобновляемые.

В связи с этим поиск новых месторождений и новых видов топлива в настоящее время играет главенствующую роль в обеспечении энергией весь мир и отдельные жизненно важные объекты. Однако новые месторождения также истощаются, а альтернативные источники энергии такие, как энергия ветра и солнца эксплуатируются лишь при благоприятных условиях и требуют немалых затрат в оснащении и эксплуатации. Это связано с их более высокой нестабильностью и изменением показателей эффективности в процессе работы.

Огромное преимущество альтернативной энергии заключается в “чистоте” получаемой и производимой энергии. Ведь она добывается из природных источников: волн, приливов/отливов, толщи Земли. Все природные явления и процессы насыщены энергией. Задача человечества заключается в ее изъятии и превращении в электрическую. Вопрос в том, что случится с Землей, когда энергия будет качаться тераваттами пока не беспокоит умы. Так что, можно сказать, что задача ясна. Осталось развивать данные отрасли.

1. КЛАССИЧЕСКИЕ ИСТОЧНИКИ ЭНЕРГИИ

Добыча ресурсов Земли подходит к завершению. Ведь практически все органические источники топлива воспроизводятся очень медленно или совсем нет. При этом человечество привыкло лишь брать, но не восполнять затраченные ресурсы. Поэтому вопрос энергетического истощения Земли не особо взволновал мир, кроме общественности и разных зеленых организаций, которые лишь грозят пальцем, если бросил бумажку на улице или не потушил костер. Поэтому к настоящему времени энергетические корпорации решают задачу лишь в поиске новых месторождений. Однако, как известно, новые разрабатываемые месторождения ничего не меняют, а точнее ухудшают экологическую обстановку еще больше.

Можно сказать, что поиски новых источников идут размеренным шагом: выращиваются энергетические элементы, добываются новые ресурсы для производства энергии. Ведь они также просуществуют относительно недолго.

Энергетика находится на первом месте в употреблении и преобразовании энергии. От нее в решающей мере зависит экономический потенциал государств и благосостояние людей. Она же оказывает наиболее сильное воздействие на окружающую среду, истощение ресурсов планеты и экономику государств. Очевидно, что темпы потребления энергии в будущем не прекратятся и даже увеличатся. В результате этого возникают следующие вопросы:

Какое влияние на биосферу и отдельные ее элементы оказывают основные виды современной (тепловой, водной, атомной) энергетики и как будет изменяться соотношение этих видов в энергетическом балансе в ближайшей и отдаленной перспективе;

Можно ли уменьшить отрицательное воздействие на среду современных (традиционных) методов получения и использования энергии;

Каковы возможности производства энергии за счет альтернативных (нетрадиционных) ресурсов, таких как энергия солнца, ветре, термальных вод и других источников, которые относятся к неисчерпаемым и экологически чистым.

Такой набор вопросов охватывает все сферы человеческой деятельности. Можно сказать, что в настоящее время задача экономико-экологического вопроса поставлена. Время действий.

1.1 Виды классических источников энергии

Все существующие виды энерготоплива в природе подразделяются на твердые, жидкие и газообразные. В отопительных приборах, для нагрева теплоносителя также применяется тепловое действие электрического тока. Некоторые группы топлива, в свою очередь, подразделяются на две подгруппы, из которых одна подгруппа представляет собой топливо в том виде, в каком оно добывается, и это топливо называется естественным; вторая подгруппа - топливо, которое получается путем переработки или обогащения естественного природного топлива; это называется искусственное топливо.

К твёрдому топливу относят:

а) естественное твёрдое топливо - дрова, каменный уголь, антрацит, торф;

б) искусственное твёрдое топливо - древесный уголь, кокс и пылевидное топливо, которое получается путём измельчения углей.

К жидкому топливу относят:

а) естественное жидкое топливо - нефть;

б) искусственное жидкое топливо - бензин, керосин, дизельное топливо (солярка) мазут, смола.

К газообразному топливу относят:

а) естественное газообразное топливо - природный газ;

б) искусственное газообразное топливо - генераторный газ, получаемый при газификации различных видов твердого топлива (торфа, дров, каменного угля и др.), коксовальный, доменный, светильный, попутный и другие газы.

Все виды органического природного топлива состоят из одних и тех же химических элементов. Разница между видами топлива состоит в том, что эти химические элементы содержатся в топливе в разном количестве.

Элементы, из которых состоит топливо, делятся на две группы.

1 группа: это те элементы, которые горят сами или поддерживают горение. К подобным элементам топлива относятся углерод, водород и кислород.

2 группа: это те элементы, которые сами не горят и не способствуют горению но они входят в состав топлива; к ним относятся азот и вода.

Особое место от названных элементов занимает сера. Сера является горючим веществом и при горении выделяет определённое количества тепла, но ее присутствие в топливе нежелательно, так как при горении серы выделяется сернистый газ, который переходит в нагреваемый металл и ухудшает его механические свойства.

Количество тепловой энергии, которое выделяет топливо при горении, измеряется калориями. Каждое топливо при горении выделяет неодинаковое количество тепла. Количество тепла (калорий), которое выделяется при полном сгорании 1 кг твердого или жидкого топлива или при сгорании 1 м3 газообразного топлива, называется как теплотворная способность топлива или теплота сгорания топлива. Теплота сгорания различных видов топлива имеет широкие пределы. Например, для мазута теплота сгорания составляет около 10000 ккал/кг, для угля 3000 - 7000 ккал/кг. Чем выше теплота сгорания топлива, тем топливо ценнее, так как для получения одного и того же количества тепла его потребуется меньше. Для сравнения тепловой ценности топлива или для производства расчётов расхода количества того или иного топлива применяется общая единица измерения или эталон топлива. В качестве такой единицы принято топливо Московского угля, имеющее теплотворную способность 7000 ккал/кг. Эта единица называется условное топливо. Для производства расчётов и сравнения расходов топлива различной теплоты сгорания необходимо знать калорийность топлива. К примеру, при проектировании, когда необходимо сравнить расход угля с расходом мазута и целесообразность строительства угольной или мазутной котельной необходимо учесть поправочный коэффициент на калорийность топлива.

Огромное многообразие ресурсов планеты очевидно, но картина мира не особо меняется.

1.3 Проблемы развития энергетики

Развитие индустриального общества опирается на постоянно растущий уровень производства и потребления различных видов энергии.

Как известно, в основе производства тепловой и электрической энергии лежит, как было сказано выше, процесс сжигания ископаемых энергоресурсов - угля, нефти или газа, а в атомной энергетике - деление ядер атомов урана и плутония при поглощении нейтронов.

Добыча, обработка и потребление энергоресурсов, металлов, воды и воздуха растет с большими требованиями человечества, при этом их запасы стремительно сокращаются. Особенно остро стоит проблема не возобновляемых органических ресурсов планеты.

Не составляет никакого труда догадаться, что органические ископаемые ресурсы, даже при вероятном замедлении темпов роста энергопотребления, будут в значительной мере израсходованы в самом ближайшем будущем.

Отметим также, что при сжигании ископаемых углей и нефти, обладающих сернистостью около 2,5%, ежегодно образуется до 400 млн. тонн сернистого газа и окислов азота, что составляет 70 кг вредных веществ на каждого жителя Земли в год.

Таким образом, даже сокращение потребления и экономичность полезных ископаемых не сможет помочь избежать энергетической катастрофы. Если в ближайшем будущем планета не станет непригодна для жизни, то критическая нужда в энергоресурсах обеспечена.

Выход остается в поиске и внедрении нескончаемых или возобновляемых источников энергии. Огромную важность играет борьба с отходами и выбросами в атмосферу тонн вредных и смертельно опасных в больших количествах веществ и тяжелых металлов.

Как уже известно, сгорание органического топлива вредно для окружающей среды. В настоящее время разрабатываются системы и устройства очистки выбросов в атмосферу продуктов сгорания. Среди устройств можно выделить следующие:

Фильтры на соплах Вентури;

Металлические лабиринтные фильтры;

Волокнистые синтетические объемные фильтры из нетканых материалов.

Из существующих методов очистки существуют следующие:

Адсорбционный метод.

Метод термического дожигания.

Термокаталитический метод.

Естественно такие средства стоят дорого. Кроме того, обслуживание систем требует наличия высококвалифицированного персонала.

2. АЛЬТЕРНАТИВНЫЕ ИСТОЧНИКИ ЭНЕРГИИ

Альтернативные источники энергии (АИЭ) в настоящее время являются наиболее существенным решением по отношению к производству электроэнергии из органического топлива. Альтернативная энергетика основана на преобразовании изначально экологически чистых компонентов, что в свою очередь, резко снижает вред производства энергии. К ним относится энергия:

Приливов и отливов;

Морских волн;

Внутреннее тепло планеты и др.

Основные причины, указывающие на важность скорейшего перехода к альтернативным источникам энергии:

Глобально-экологический: сегодня общеизвестен и доказан факт пагубного влияния на окружающую среду традиционных энергодобывающих технологий (в т. ч. ядерных и термоядерных), их применение неизбежно ведет к катастрофическому изменению климата уже в первых десятилетиях XXI веке.

Экономический: переход на альтернативные технологии в энергетике позволит сохранить топливные ресурсы страны для переработки в химической и других отраслях промышленности. Кроме того, стоимость энергии, производимой многими альтернативными источниками, уже сегодня ниже стоимости энергии из традиционных источников, да и сроки окупаемости строительства альтернативных электростанций существенно короче. Цены на альтернативную энергию снижаются, на традиционную - постоянно растут;

Социальный: численность и плотность населения постоянно растут. При этом трудно найти районы строительства АЭС, ГРЭС, где производство энергии было бы рентабельно и безопасно для окружающей среды. Общеизвестны факты роста онкологических и других тяжелых заболеваний в районах расположения АЭС, крупных ГРЭС, предприятий топливно-энергетического комплекса, хорошо известен вред, наносимый гигантскими равнинными ГЭС, - всё это увеличивает социальную напряженность.

Несмотря на это переход на АИЭ происходит плавно. Многие источники энергии устанавливают на определенной территории, и их эффективность зависит от благоприятных условий, времени и данных. Новинка всегда стоит гораздно дороже, чем укоренившийся продукт. Поэтому установка и эксплуатация стоит немалых затрат. Однако во всем мире уже довольно часто можно встретить ветряки или солнечные панели на крыше жилого здания, то есть АИЭ достигли массового применения, а это значит, что строительство в скором времени значительно снизит тарифы. Не стоит забывать про мегакорпорации и небольшие компании, которые существуют за счет добычи полезных ископаемых: нефти, газа, угля, и вряд ли они прекратят их добычу в силу спасения экологии планеты. Поэтому для успокоения общественности на “грязное” производство закупают различного рода очистные и фильтрующие системы. Но это лишь по большей мере единицы компаний и статьи в газетах и интернете.

2.1 Развитие альтернативных источников энергии

Основное достоинство АИЭ - это производство безвредной энергии. Значит, переход на АИЭ может изменить энергетическую и экологическую обстановку в мире. Энергия, получаемая с помощью АИЭ бесплатна.

Наиболее явными из недостатков медленного внедрения данной категории производства энергии являются: недостаточное финансирование и перебои в работе. Это связано с тем, что до сих пор их внедрение и производство является весьма дорогостоящим процессом. Новизна и недостаточная осведомленность для многих организаций также значительна. Многие производители предпочитают вредные и опасные для здоровья и окружающей среды электростанции в силу их надежности и готовности к полноценной работе, чем дорогостоящие и “капризные” системы производства энергии на возобновляемых источниках.

Перебои энергии являются существенным недостатком. Например, производство солнечной энергии возможно лишь в дневное время суток. Поэтому чаще всего вместе с альтернативными источниками энергии устанавливаются все те же вредные производства для компенсации энергоресурсов. При этом лишняя приобретенная энергия накапливается в аккумуляторных батареях.

АИЭ находятся на стадии значительного развития и внедрения. Многие страны уже перешли на них и добывают энергию в огромных количествах. Многие государства благодаря своему территориальному расположению активно используют АИЭ.

Суммарная установленная мощность ветрогенераторов в Китае на 2014 год составила 114763 МВт. Что же заставило правительство так активно развивать ветроэнергетику? Китай является лидером по выбросам в атмосферу СО2Планируется использовать в первую очередь геотермальную, ветряную, солнечную энергию. Согласно государственному плану, к 2020 г. в 7 районах страны будут построены огромные ветряные ЭС с общей выработкой в 120 гигаватт.

В США активно развивают альтернативную энергетику. Например, суммарная мощность американских ветрогенераторов США в 2014 г. составила 65879 МВт. США является мировым лидером по развитию геотермальной энергетики - направлению, использующему для получения энергии разницу температур между ядром Земли и ее корой. Один из методов использования горячих геотермальных ресурсов - УГС (усовершенствованные геотермальные системы), в которые вкладывает средства Министерство энергетики США. Их поддерживают также научные центры и венчурные компании (в частности, Google), но пока УГС остаются коммерчески неконкурентоспособными.

Можно также выделить такие страны по огромную влиянию АИЭ, как Германия, Япония, Индия и другие.

3. ЭЛЕКТРОСТАНЦИЯ НА МОЛНИИ

Одной из первой компанией по использованию энергии из грозовых облаков стала американская компания Alternative Energy Holdings. Она предложила способ использования даровой энергии путем ее сбора и утилизации, возникающей из электрических разрядов грозовых облаков. Экспериментальная установка была запущена в 2007 году и называлась “сборщик молний”. Разработки и исследования грозовых явлений содержат огромные скопления энергии, которые американская компания предложила использовать в качестве источника электроэнергии.

3.1 Грозовая электростанция

Грозовая электростанция, по сути, представляет собой классическую электростанцию, которая преобразует энергию молний в электричество. На данный момент грозовая энергетика активно исследуется, и возможно в ближайшем будущем появятся в больших количествах грозовые электростанции наряду с другими электростанции на базе чистой энергии.

3.1.1 Молния как источник грозовых перенапряжений

Грозовые молнии представляют собой электрические разряды, накапливающиеся в больших количествах в облаках. За счет потоков воздуха в грозовых облаках происходит накопление и разделение положительных и отрицательных зарядов, хотя вопросы по данной теме до сих пор исследуются.

Одно из распространенных предположений образования электрических зарядов в облаках связано с тем, что данный физический процесс происходит в постоянном электрическом поле земли, которое обнаружил еще М. В. Ломоносов во время проведения опытов.

Рис. 3.1. Наглядная схема развития грозы

Наша планета всегда имеет отрицательный заряд, при этом напряженность электрического поля вблизи поверхности земли составляет около100 В/м. Она обусловлена зарядами земли и мало зависит от времени года и суток и почти одинакова для любой точки земной поверхности. Воздух, окружающий Землю, имеет свободные заряды, которые движутся по направлению электрического поля Земли. Каждый кубический сантиметр воздуха вблизи земной поверхности содержит около 600 пар положительно и отрицательно заряженных частиц. С удалением от земной поверхности плотность заряженных частиц в воздухе растет. У земли проводимость воздуха мала, но на расстоянии 80 км от земной поверхности она увеличивается в 3 млрд. раз и достигает проводимости пресной воды.

Таким образом, Землю с окружающей атмосферой по электрическим свойствам можно представить как шаровой конденсатор колоссальных размеров, обкладками которого являются Земля и проводящий слой воздуха, находящийся на расстоянии 80 км от поверхности Земли. Изолирующей прослойкой между этими обкладками служит мало-проводящий электричество слой воздуха толщиной 80 км. Между обкладками такого конденсатора напряжение составляет около 200 кВ, а ток, проходящий под воздействием этого напряжения, равняется 1,4 кА. Мощность конденсатора составляет около 300 МВт. В электрическом поле этого конденсатора в интервале от 1 до 8 км от поверхности Земли образуются грозовые облака и совершаются грозовые явления.

Молния, как носитель электрических зарядов, является наиболее близким к электричеству источником, по сравнению с другими АИЭ. Заряд, который накапливается в облаках, имеет потенциал в несколько миллионов вольт относительно поверхности Земли. Направление тока молнии может быть как от земли к облаку, при отрицательном заряде тучи (в 90% случаев), так и от облака к земле (в 10% случаев). Длительность разряда молнии составляет в среднем 0,2 с, редко до 1…1,5 с, длительность переднего фронта импульса - от 3 до 20 мкс, ток составляет несколько тысяч ампер, до 100 кА, температура в канале достигает 20000 ?С, появляется мощное магнитное поле и радиоволны. Молнии могут образовываться также при пылевых бурях, метелях, извержениях вулканов.

альтернативный энергия грозовой электростанция

3.1.2 Принцип действия грозовой электростанции

Основан на все том же процессе, что и другие электростанции: преобразование энергии источника в электричество. По сути, молния содержит то же электричество, то есть ничего преобразовывать не надо. Однако указанные выше параметры “стандартного” грозового разряда настолько велики, что если это электричество попадет в сеть, то все оборудование просто сгорит в считанные секунды. Поэтому в систему вводят мощные конденсаторы, трансформаторы и различного рода преобразователи, подстраивающие данную энергию под требуемые условия применения в электросетях и оборудовании.

3.1.3 Преимущества и недостатки грозовой электростанции

Преимущества грозовых электростанций:

Земельно-ионосферный суперконденсатор постоянно подзаряжается с помощью возобновляемых источников энергии -- солнца и радиоактивных элементов земной коры.

Грозовая электростанция не выбрасывает в окружающую среду никаких загрязнителей.

Оборудование грозовых станций не бросается в глаза. Воздушные шары находятся слишком высоко для того, чтобы их увидеть невооруженным глазом. Для этого понадобится телескоп или бинокль.

Грозовая электростанция способна вырабатывать энергию постоянно, если поддерживать шары в воздухе.

Недостатки грозовых электростанций:

Грозовое электричество, как и энергию солнца или ветра, трудно запасать.

Высокое напряжение в системах грозовых электростанций может быть опасным для обслуживающего персонала.

Общее количество электроэнергии, которую можно получать из атмосферы, ограниченно.

В лучшем случае грозовая энергетика может служить лишь незначительным дополнением к другим источникам энергии.

Таким образом, грозовая энергетика в настоящее время достаточно ненадежна и уязвима. Однако это не уменьшает ее значимости в пользу перехода на АИЭ. Некоторые районы планеты насыщены благоприятными условиями, что может значительно продолжить изучение грозовых явлений и получение из них необходимого электричества.

3.2 Расчет грозовой электростанции

Расчет грозовой электростанции рассчитан, в первую очередь, на определение выходной мощности. Ведь задача любой электростанции заключается в максимальной энергетической эффективности, чтобы окупить средства на эксплуатацию и установку, а также производство электроэнергии. Чем выше количество выходной энергии, тем больший доход она принесет, и большее количество объектов будет ею обслужено. Так как основой входящей энергии грозовой электростанции является грозовой разряд, то, благодаря схожести его состава с выходной электроэнергией, расчет мощности электростанции практически эквивалентен мощности заряда молнии за исключением внутренних потерь.

На выходную мощность электростанции влияют такие параметры, как место установки, эффективность оборудования

Форма импульсов тока молнии i(t) описывается выражением:

где I - максимум тока; k - корректирующий коэффициент; t - время; - постоянная времени фронта; - постоянная времени спада.

Параметры, входящие в эту формулу, приведены в табл. 3.1. Они соответствуют наиболее сильным молниевым разрядам, которые встречаются редко (менее чем 5% случаев). Токи величиной 200 кА встречаются в 0,7...1% случаев, 20 кА - в 50% случаев.

Таблица 3.1. Параметры формулы (3.1).

Параметр

Для первого случая результат формы импульса будет таковым:

Таким образом, форма молнии представляет собой следующий вид:

Рис. 3.2. График формы импульса тока

При всем при этом максимальная разница потенциалов молнии достигает 50 миллионов вольт, при токе до 100 тысяч ампер. Для расчётов энергии молнии возьмем цифры ближе к средним для большинства молний, а именно: напряжение 25 миллионов вольт и ток 10 тысяч ампер.

При грозовом разряде, электрический потенциал уменьшается до нуля. Поэтому для того, чтобы правильно определить среднюю мощность грозового разряда, в расчётах надо брать половину первоначального напряжения.

Теперь мы имеем следующую мощность электрического разряда:

где P - мощность грозового разряда, U - напряжение; I - сила тока.

То есть по (3.2) получаем:

Значит, мощность грозового разряда составляет 125 миллионов киловатт. С учетом времени в несколько тысячных секунды определи общее количество энергии молнии:

Вт·ч=34,722 кВт·ч,

где t1 - количество секунд в часе; t2 - время длительности грозового разряда.

Возьмем среднюю цену электрической энергии 4 рубля за 1 кВт·ч. Тогда стоимость всей энергии молнии составит 138,88 рублей.

Реально получить и использовать энергию по данным расчетам, например, на нагрев воды, можно только небольшую часть. Основная часть энергии молнии расходуется при искровом разряде на нагрев атмосферы и даже теоретически потребители могут использовать меньшую часть энергии молнии.

В процессе работы над курсовым проектом сделаны выводы об истощении ресурсов планеты и загрязнении атмосферы и поверхности земли в процессе их переработки и добычи. Кроме того, рассмотрены основные виды замены вредного производства на более щадящее путем выработки энергии из чистых природных источников таких, как вода, приливы, Солнце и др.

В курсовом проекте рассматривается возможность использования энергии грозовых разрядов для преобразования их в электроэнергию. Выполнены расчеты по количеству и стоимости грозового разряда. Однако данные расчеты относительны. Ведь энергия молнии расходуется на атмосферные процессы, и лишь ее небольшая часть добирается до электростанции.

Размещено на Allbest.ru

Подобные документы

    Существующие источники энергии. Мировые запасы энергоресурсов. Проблемы поиска и внедрения нескончаемых или возобновляемых источников энергии. Альтернативная энергетика. Энергия ветра, недостатки и преимущества. Принцип действия и виды ветрогенераторов.

    курсовая работа , добавлен 07.03.2016

    Характеристика невозобновляемых источников энергии и проблемы их использования. Переход от традиционных источников энергии к альтернативным. Нефть и газ и их роль в экономике любого государства. Химическая переработка нефти. Добыча нефти в Украине.

    реферат , добавлен 27.11.2011

    Проблемы развития и существования энергетики. Типы альтернативных источников энергии и их развитие. Источники и способы использования геотермальной энергии. Принцип работы геотермальной электростанции. Общая принципиальная схема ГеоЭС и ее компоненты.

    курсовая работа , добавлен 06.05.2016

    Существующие источники энергии. Типы электростанций. Проблемы развития и существования энергетики. Обзор альтернативных источников энергии. Устройство и принцип работы приливных электростанций. Расчет энергии. Определение коэффициента полезного действия.

    курсовая работа , добавлен 23.04.2016

    Ветроэнергетика, солнечная энергетика и гелиоэнергетика как альтернативные источники энергии. Нефть, уголь и газ как основные источники энергии. Жизненный цикл биотоплива, его влияние на состояние природной среды. Альтернативная история острова Самсо.

    презентация , добавлен 15.09.2013

    Обзор развития современной энергетики и ее проблемы. Общая характеристика альтернативных источников получения энергии, возможности их применения, достоинства и недостатки. Разработки, применяемые в настоящее время для нетрадиционного получения энергии.

    реферат , добавлен 29.03.2011

    География мировых природных ресурсов. Потребление энергии - проблема устойчивого развития. Статистика потребления мировой энергии. Виды нетрадиционных (альтернативных) источников энергии и их характеристика. Хранение отработавшего ядерного топлива.

    презентация , добавлен 28.11.2012

    Классификация альтернативных источников энергии. Возможности использования альтернативных источников энергии в России. Энергия ветра (ветровая энергетика). Малая гидроэнергетика, солнечная энергия. Использование энергии биомассы в энергетических целях.

    курсовая работа , добавлен 30.07.2012

    Виды нетрадиционных возобновляемых источников энергии, технологии их освоения. Возобновляемые источники энергии в России до 2010 г. Роль нетрадиционных и возобновляемых источников энергии в реформировании электроэнергетического комплекса Свердловской обл.

    реферат , добавлен 27.02.2010

    Генерация электроэнергии из энергии ветра, история ее использования. Ветровые электростанции и их основные типы. Промышленное и частное использование ветровых электростанции, их преимущества и недостатки. Использование ветровых генераторов в Украине.

Используя свойства молнии направляться к высоким предметам, особенно в том случае, если они хорошо про­водят электрический ток, можно «ловить» молнию. Для этого в нашем Союзе были использованы воздушные ша­ры, поднимавшие в грозовые тучи металлические троссы, присоединённые к земле. В этих случаях «пойманные» молнии были использованы лишь для научных целей.

Оценить, насколько выгодно использовать энергию молнии для технических целей, можно, определив работу, которую может произвести грозовой разряд. Так как молния длится очень короткое время, то эта энергия ока­зывается очень небольшой. Подсчитали, что одна молния может «наработать» в среднем лишь на несколько руб­лей. При такой небольшой работоспособности молнии трудно говорить о целесообразности технического её ис­пользования. Применение молнии в качестве источника энергии затруднено ещё и потому, что за один грозовой сезон даже в очень высокий молниеприёмник (400 - 800 метров над землёй) молния ударяет не более 20-25 раз.

Так как шаровая молния изучена сравнительно мало, то до сих пор ещё нет надёжно проверенных способов защиты от неё. Хотя и бывали случаи, когда шаровая молния прони­кала даже через закрытое …

Чтобы не быть поражённым ударом молнии, нужно избегать во время грозы подходить к молниеотводам или высоким одиночным предметам (столбам, деревьям) на расстояние меньшее 8-10 метров. Если человек застиг­нут грозой вдали …

Основные требования, которые предъявляют к соору­жению молниеотвода, защищающего от грозы колхозные и сельские постройки, - это дешевизна и простота са­мого устройства. Наилучшей защитой является стержневой молние­отвод, который устанавливают на самой …

1

Грозовая энергетика является способом, на основе которого получают энергию при помощи того, что фиксируется и перенаправляется энергия молний в электрические сети. Указанный вид энергетики использует возобновляемые источники энергии. Молния является большим искровым электрическим разрядом, который появляется в атмосфере. На основе проводившихся оценок исследователей было установлено, что в среднем в течение каждой секунды осуществляется удар 100 молний. Порядка четверти среди всех молний попадают в землю. Исследования продемонстрировали, что, как правило, значение средней длины молнии будет около 2,5 км, попадаются разряды, распространение которых может происходить на расстояния до 20 км. Если провести установку молниеулавливающей станции, где молнии считаются частным явлением, то есть возможности для получения большого количества энергии, которое будут использовать потребители.

грозовая энергетика

альтернативные источники энергии

электричество

1. Львович И.Я. Альтернативные источники энергии& / И.Я. Львович, С.Н. Мохненко, А.П. Преображенский // Вестник Воронежского государственного технического университета. 2011. Т. 7. № 2. С. 50-52.

2. Львович И.Я. Альтернативные источники энергии& / И.Я. Львович, С.Н. Мохненко, А.П. Преображенский // Главный механик. 2011. № 12. С. 45-48.

3. Мохненко С.Н. Альтернативные источники энергии& / С.Н. Мохненко, А.П. Преображенский // В мире научных открытий. 2010. № 6-1. С. 153-156.

4. Олейник Д.Ю. Вопросы современной альтернативной энергетики& / Д.Ю.Олейник, К.В. Кайдакова, А.П. Преображенский // Вестник Воронежского института высоких технологий. 2012. № 9. С. 46-48.

5. Болучевская О.А. Вопросы современной экологической безопасности& / О.А. Болучевская, В.Н. Филипова& // Современные исследования социальных проблем. 2011. Т. 5. № 1. С. 147-148.

6. Преображенский А.П. Использование многокритериального подхода при анализе системы альтернативных энергетических источников& / А.П. Преображенский // Моделирование, оптимизация и& информационные технологии. 2017. № 2(17). С. 11.

7. Шишкина Ю.М. Вопросы государственного управления / Ю.М. Шишкина, О.А. Болучевская // Современные исследования социальных проблем. 2011. Т. 6. № 2. С. 241-242.

8. Нечаева А.И. О построении подсистемы оценки степени загрязненности окружающей среды / А.И. Нечаева& // Международный студенческий научный вестник. 2016. № 3-2. С. 231.

9. Щербатых С.С. О построении подсистемы оценки окружающей среды / С.С. Щербатых // Международный студенческий научный вестник. 2016. № 3-2. С. 240-241.

10. Якименко А.И. Применение современных источников энергии& / А.И. Якименко& // Международный студенческий научный вестник. 2016. № 3-2. С. 242.

Человечество непрерывным образом нуждается в потреблении энергии - это можно наблюдать еще с давних времен. Необходимо наличие энергии не только для того, чтобы осуществлялась нормальное функционирование комплексного существующего общества, но и еще с тем, чтобы было обеспечено физическое существование среди любых человеческих организмов.

Если провести анализ особенностей развития в человеческом обществе, то можно убедиться в том, что они во многом обусловлены добычей и применением энергии. Можно наблюдать довольно большое влияние со стороны энергетического потенциала на то, каким образом происходит внедрение разных технических новшеств, нам трудно представлять реализацию возможностей развития в промышленной сфере, науке, культуре без того, чтобы были использованы земные энергетические ресурсы. На базе применения энергии, человечество имеет возможности для того, чтобы создавать всё более комфортные жизненные условия, при этом идет резкое увеличение разрыв среди ним и природой.

Можно заметить, что процессы, связанные с освоением разных способов, касающихся добычи энергии, возникли ещё в далекие древние времена, уже тогда люди смогли научиться добывать огонь и в существующих условиях есть движение топлива в комплексных городских системах.

Исходя из того, что есть возможность истощения запасов ресурсов естественного топлива (нефтяные, газовые и др.) с течением временем, проводятся работы, связанные с поиском альтернативных источников энергии . По ним можно отметить возможности грозовой энергетики.

Грозовая энергетика является способом, позволяющим получать энергию на базе того, что фиксируется и перенаправляется энергия молний в электрические сети. Указанный тип энергетики базируется на возобновляемом источнике энергии. Молния является большим искровым электрическим разрядом, который появляется в атмосфере. Большей частью, его можно наблюдать при грозе. Молнию можно увидеть, как яркую световую вспышку и она сопровождается громовыми раскатами. Интересным является то, что молнии можно наблюдать еще на других планетах: Юпитер, Венера, Сатурн и др. Значение величины тока при разряде молний может достичь до нескольких десятков и даже сотен тысяч ампер, а значение величины напряжения - до миллионов вольт.

Исследования, которые касались электрической природы молний, осуществлялись в работах американского физика Б. Франклином, на базе его разработок проводились опыты, касающиеся извлечения электричества из грозовых облаков. Франклином была опубликована в 1750 году работа, содержащая описание экспериментов с применением воздушных змеев, запускаемых в период грозы.

Михаила Ломоносова считают как автора первой гипотезы, в ее рамках было объяснение явления электризации в грозовых облаках. На высотах, составляющих несколько десятков километров идет размещение проводящих слоев атмосферы, их открыли в 20 веке. На основе привлечения разных способов исследования, это касается и космических, появились возможности для того, чтобы изучать разные характеристики атмосферы.

Атмосферное электричество можно рассматривать в виде множества электрических явлений, которые осуществляются происходящих в области атмосферы. Когда осуществляют исследования по атмосферному электричеству, то идет изучение электрического поля в атмосфере, особенности ее ионизации, рассматриваются характеристики электрических токов, и другие свойства. Есть разные проявления атмосферного электричества вследствие того, что влияют локальные метеорологические факторы. В сфере атмосферного электричества наблюдаются многочисленные процессы как в тропосферной области, так и стратосферной.

Осуществлялась разработка теорий, относящихся к атмосферному электричеству исследователями Ч. Вильсоном и Я.И. Френкелем. Основываясь на теории Вильсона, есть возможности для выделения конденсатора, его обкладки представляют собой Земля и ионосфера, идет их заряд со стороны грозовых облаков. Появляется электрическое поле атмосферы вследствие того, что есть разность потенциалов, которая возникает между обкладок конденсатора. Исходя из теории Френкеля, есть возможности для объяснения электрического поля атмосферы на базе электрических явлений, возникающих в тропосферной области.

Исследования демонстрируют, что во многих случаях средняя длина молний достигает порядка 2,5 км, можно встретить разряды, которые имеют распространение на расстояния до 20 км.

Можно отметить определенную классификацию молний.

Обсудим характеристики, относящиеся к наземным молниям. Когда формируется наземная молния, то это может быть представлено как совокупность нескольких этапов. Для первого этапа, в тех областях, для которых электрическим полем достигается критическое значение, можно увидеть явление ударной ионизации, она формируется вначале за счет свободных зарядов, их всегда можно наблюдать в окружающем воздухе, ими за счет электрического поля достигаются большие величины скоростей в направлении земли и, вследствие того, что есть столкновения с молекулами, формирующими воздух, происходит их ионизация.

Если мы рассматриваем современные представления, то осуществление процессов ионизации в атмосфере, когда проходит разряд, осуществляется, поскольку влияет высокоэнергетическое космическое излучение - частицы, при этом можно наблюдать то, что уменьшается пробивное напряжение в воздухе, если сравнивать с нормальными условиями. Тогда происходит образование электронных лавин, они будут переходить в соответствующие нити в электрических разрядах, говорят о стримерах, они представляют собой хорошо проводящие каналы, за счет сливания происходит образование канала, имеющего высокую проводимость.

Есть движение такого лидера по направлению к земле на основе ступенчатой закономерности, он достигает скорости, которая будет несколько десятков тысяч км/с, потом происходит замедление его движения, можно наблюдать, что свечение уменьшается, затем идет начало следующей ступени. Значение средней скорости движения лидера к земной поверхности будет порядка 200 000 м/с. Рядом с земной поверхностью идет усиление напряженности и возникает, ответный стример, идет его соединение затем с лидером. Подобную характеристику молнии применяют, когда создают молниеотвод.

Для конечного этапа происходит главный разряд молнии, в нем идет достижение значений токов до сотен тысяч ампер, наблюдают яркость, она существенным образом больше, чем яркость лидера, помимо этого значение скорости его движения будет несколько десятков к/м. Значение температуры в канале, который относится к главному разряду достигает до нескольких тысяч градусов. Значение величины длины молниевого канала будет в основном несколько километров.

Для внутриоблачных молний есть большей частью только лидерные компоненты, по длине они будут составлять от 1 до 150 км. Когда возникает молния, то наблюдают изменения по электрическим и магнитным полях и радиоизлучению, говорят об атмосфериках.

Был открыт более, чем 20 лет назад некоторый вид молний, назвали эльфами, они относятся к верхней области атмосферы. Они представляют собой большие вспышки-конусы, которые характеризуются диаметрами порядка 400 км. После, через определенное время были обнаружены другие типы - джеты, которые представлялись как трубки-конусы, имеющие синий цвет, они имеют высоту, достигающую 40-70 км.

В результате оценок исследователей было показано, что в среднем в течение каждой секунды идет удар около 100 молний. Порядка четверти среди всех молний попадают в земную поверхность.

Разряд молний можно рассматривать как электрический взрыв и для определенных случаев он подобен процессу детонации. Как результат появляется ударная волна, возникновение ее опасно в случае непосредственной близости, может бить повреждение зданий, деревьев. При больших расстояниях происходит процесс вырождения ударных волн в звуковые - слышны громовые раскаты.

Можно отметить среднегодовое количество дней, когда происходит гроза для некоторых городов России: в Архангельске - 16, Мурманске - 5, Санкт-Петербурге - 18, Москве - 27,Воронеже - 32, Ростове-на-Дону - 27, Астрахани - 15, Самаре - 26, Казани - 23, Екатеринбурге - 26, Сыктывкаре - 21, Оренбурге - 22, Уфе - 29, Омске - 26, Ханты-Мансийске- 17, Томске - 23, Иркутске - 15, Якутске - 14, Петропавловске-Камчатском - 0, Хабаровске - 20, Владивостоке - 9.

Есть некоторая классификация по грозовым облакам, которая осуществляется, основываясь на грозовых характеристиках и есть зависимость таких характеристик во многом от того, какое метеорологическое окружение, в котором происходят процессы развития гроз. В случае одноячейковых кучево-дождевых облаков процессы развития будут тогда, когда ветер будет небольшим и слабым образом изменяется давление. Появляются локальные грозы.

Для размеров облаков характерным является то, что они будут в среднем порядка 10 километров, длительность их жизни не превосходит 1 час. Гроза появляется после того, как возникло кучевое облако в случае, когда есть хорошая погода. Вследствие благоприятных условий идет рост кучевых облаков по различным направлениям.

В верхних частях облаков идет формирование кристаллов льда, поскольку идет охлаждение, облака превращаются в мощно-кучевые облака. Формируются условия для того, чтобы выпадали осадки. Это будет кучево-дождевым облаком. Вследствие испаряющихся частиц осадков наблюдаются процессы охлаждения в окружающем воздухе. На этапе зрелости в облаках одновременным образом есть и восходящие, и нисходящие воздушные потоки.

На этапе распада в облаках есть преобладание нисходящих потоков, и потом они постепенным образом охватывают все облако. Весьма распространенный тип гроз - многоячейковые кластерные грозы. Размеры их могут достигать от 10 до 1000 километров. Для многоячейкового кластера отмечают совокупность грозовых ячеек, они двигаются как единое целое, однако идет расположение каждой ячейки в кластере на различных шагах изменений грозовых облаков. В грозовых ячейках, которые существуют на этапе зрелости, большей частью характерна центральная область кластера, а в распадающихся ячейках характерной является подветренная часть в кластере. Размер в поперечнике их большей частью составляет около 20-40 км. Для многоячейковых кластерных грозах может появляться град, идут ливневые дожди.

В структуре многоячейковых линейных гроз можно отметить линию гроз, в ней есть продолжительный, достаточно развитый фронт по порывам ветра в передних линиях фронта. Поскольку есть линии шквалов, то может быть крупный град и идти сильные ливни.

Появление суперъячейковых облаков может быть относительно редким, но их возникновение может приводить к большим угрозам для жизни людей. Есть подобие суперъячейкового облака и одноячейкового, они характеризуются одной зоной восходящего потока. Однако есть различие, заключающееся в том, что значение размера ячейки довольно большое: диаметр может достигать несколько десятков километров, высоты будут порядка 10-15 километров (в ряде случаев идет процесс проникновения верхней границы в стратосферу). При начале грозы характерной является температура воздуха рядом с землей около +27:+30 и более. Как правило в передней кромке суперъячейкового облака идет небольшой дождь.

Исследователями было продемонстрировано на базе самолётных и радарных исследовательских работ, что во многих случаях высота единичной грозовой ячейки может быть порядка 8-10 км и значение времени ее жизни около 30 минут. В случае восходящих и нисходящих потоков для изолированных гроз характерным является диаметр, который лежит в диапазоне от 0.5 до 2.5 км и высотой от 3 до 8 км.

Есть зависимость параметров скорости и движения грозовых облаков от того, как они располагаются относительно земной поверхности, того, как происходят процессы взаимодействия по восходящим и нисходящим потокам облаков с теми областями атмосферы, где наблюдаются процессы развития гроз. Скорость изолированной грозы обычно составляет порядка 20 км/час, но в некоторых грозах могут быть получены и большие значения. Если есть экстремальные ситуации, то значения скоростей в грозовом облаке могут быть до 65 - 80 км/час.

Энергия, которая приводит грозу в действие, обусловлена тем, что есть скрытая теплота, она высвобождается, когда конденсируется водяной пар и идет образование облачных капель. В этих процессах на каждый грамм воды, конденсирующейся в области атмосферы наблюдается процесс выхода порядка 600 калорий тепла. Когда замерзают водяные капли в верхних частях облаков, осуществляется процесс выхода ещё порядка 80 калорий на грамм. Возникающая при процессах высвобождения тепловая энергия частичным образом переходит в энергию, которая относится к восходящим потокам. При осуществлении оценок общей энергии в грозы можно получить величину порядка 108 киловатт-часов, это мы можем соотнести с ядерным зарядом в 20 килотонн. В случае, если есть большие многоячейковые грозы значение энергии может быть более, чем в 10 раз.

Особенности структуры того, как располагаются электрические заряды как во внутренней, так и внешней области грозовых облаков, подчиняются сложным закономерностям. Однако при этом, мы можем представить то, какая обобщенная картина распределения электрических зарядов, которые характеризуют стадию зрелости облаков. Весьма большой вклад принадлежит положительной дипольной структуре. В ней в верхней области облака существует положительный заряд, во внутренней части облака существует отрицательный заряд. Когда двигаются атмосферные ионы на краях облака возникают процессы формирования экранирующих слоев, которые ведут к маскированию электрической структуры облаков относительно наблюдателей, которые располагаются вне их. Анализ приводит к тому, что отрицательные заряды будут относиться к высотам, характеризующимся температурой окружающего воздуха, которая лежит в диапазоне от -5 до -17 °C. При увеличении скорости восходящих потоков в облаках идет рост высоты центров отрицательных зарядов.

Особенности электрической структуры в грозовых облаках можно объяснить при помощи разных подходов. По основным гипотезам можно указать такую, которая основывается на том, что крупные облачные частицы характеризуются в основном отрицательным зарядом, лёгкие частицы характеризуются положительным зарядом. Помимо этого, крупные частицы имеют большую скорость падения, что подтверждалось на базе лабораторных экспериментов. Может быть проявление и других механизмов электризации. Когда увеличивается объемный электрический заряд, который есть в облаке, до определенных значений, то возникает разряд молнии.

Анализ показывает, что молнии могут считаться, как довольно ненадежный источник энергии, так как довольно трудно осуществить предсказания по тому, где и в какое время будет появление грозы. Молния привносит напряжение порядка сотен миллионов вольт и значения пиковых токов могут быть в некоторых молниях до 200 килоампер (в общем случае - 5-20 килоампер).

Есть еще проблемы грозовой энергетики, которые связаны с весьма малой длительностью разрядов молний - доли секунд, в этой связи требуется использование мощных и очень дорогостоящих конденсаторов.

То есть, можно отметить большое число проблем . Но, если сделать установку молниеулавливающей станции, где молнии рассматриваются как частое явление, то можно обеспечить большое количество энергии, которое будет направляться потребителям.

Библиографическая ссылка

Кузнецов Д.А. ВОЗМОЖНОСТИ РАЗВИТИЯ СОВРЕМЕННОЙ ГРОЗОВОЙ ЭНЕРГЕТИКИ // Международный студенческий научный вестник. – 2017. – № 4-6.;
URL: http://eduherald.ru/ru/article/view?id=17585 (дата обращения: 15.06.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»
Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Рецепт том быть хорошим другом Рецепт том быть хорошим другом Конспект занятия по рисованию на тему: Конспект занятия по рисованию на тему: "Зимние забавы" Плед на выписку для новорожденных крючком: схемы Плед на выписку для новорожденных крючком: схемы